Proper hereditary shape equivalences preserve property C
نویسندگان
چکیده
منابع مشابه
Metrizable Shape and Strong Shape Equivalences
In this paper we construct a functor Φ : proTop → proANR which extends Mardešić correspondence that assigns to every metrizable space its canonical ANR-resolution. Such a functor allows one to define the strong shape category of prospaces and, moreover, to define a class of spaces, called strongly fibered, that play for strong shape equivalences the role that ANRspaces play for ordinary shape e...
متن کاملHereditary Approximation Property
If X is a Banach space such that the isomorphism constant to `2 from n dimensional subspaces grows sufficiently slowly as n → ∞, then X has the approximation property. A consequence of this is that there is a Banach space X with a symmetric basis but not isomorphic to `2 so that all subspaces of X have the approximation property. This answers a problem raised in 1980 [8]. An application of the ...
متن کاملShape-wilf-equivalences for Vincular Patterns
We extend the notion of shape-Wilf-equivalence to vincular patterns (also known as “generalized patterns” or “dashed patterns”). First we introduce a stronger equivalence on patterns which we call filling-shape-Wilfequivalence. When vincular patterns α and β are filling-shape-Wilf-equivalent, we prove that α⊕ σ and β ⊕ σ must also be filling-shape-Wilf-equivalent. We also discover two new pairs...
متن کاملMany countable support iterations of proper forcings preserve Souslin trees
We show that many countable support iterations of proper forcings preserve Souslin trees. We establish sufficient conditions in terms of games and we draw connections to other preservation properties. We present a proof of preservation properties in countable support iterations in the so-called Case A that does not need a division into forcings that add reals and those who do not.
متن کاملThe Proper and Semi-proper Forcing Axioms for Forcing Notions That Preserve
We prove that the PFA lottery preparation of a strongly unfoldable cardinal κ under ¬0 forces PFA(א2-preserving), PFA(א3-preserving) and PFAא2 , with 2 ω = κ = א2. The method adapts to semi-proper forcing, giving SPFA(א2-preserving), SPFA(א3-preserving) and SPFAא2 from the same hypothesis. It follows by a result of Miyamoto that the existence of a strongly unfoldable cardinal is equiconsistent ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 1985
ISSN: 0166-8641
DOI: 10.1016/0166-8641(85)90086-0